سؤالات و فرضیه های تحقیق

مارس 27, 2019 by بدون دیدگاه

 

۱-۴: اهداف تحقیق
هدف اصلی تحقیق، ارائه مدلی برای پیش بینی قیمت سهام با بکارگیری شبکه عصبی درک چندلایه و تکنیک استخراج قانون از شبکه های عصبی با استفاده از الگوریتم ژنتیک و ترکیب مدلهای مزبور با مدل خطی ARIMA در شرکت های عضو بورس و اوراق بهادار تهران است. علاوه بر هدف اصلی تحقیق، اهداف فرعی دیگری نیز مورد نظر هستند که در سطح پایین تری از هدف اصلی قرار می گیرند. این اهداف عبارتند از:
-کمک به سرمایه گذاران جهت اتخاذ تصمیم های صحیح و مطلوب
-کمک به مدیران برای انجام وظیفهی حداکثر سازی ثروت سهامدارن
-تعیین مدل بهینه از میان مدل های فوق برای پیش بینی قیمت سهام
۱-۵: سؤالات و فرضیه های تحقیق
پس از بررسی مسئله و اهداف تحقیق و مطالعات مقدماتی درباره پاسخ های احتمالی، سؤالات تحقیق به شرح زیر قابل طرح است:
آیا سری زمانی خطی ARIMA مدل مناسبی برای پیش بینی قیمت سهام است؟
آیا شبکه عصبی درک چند لایه(MLP) در پیش بینی قیمت سهام بر مدل خطی ARIMA برتری دارد؟
آیا تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با استفاده از الگوریتم ژنتیک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد؟
آیا تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با استفاده از الگوریتم ژنتیک در پیش بینی قیمت سهام بر شبکه عصبی درک چند لایه(MLP) برتری دارد؟
آیا ترکیب مدل ARIMA با شبکه عصبی برای پیش بینی قیمت سهام با استفاده از تبدیل موجک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد؟
آیا مدل ترکیبی تبدیل موجک، شبکه عصبی و الگوریتم ژنتیک فازی در پیشبینی شاخص قیمت نسبت به بقیه مدلهای ارائه شده از دقت بالاتری برخوردار است؟
بنابراین فرضیات اصلی تحقیق به صورت زیر خواهد بود:
فرضیه۱) مدل خطی ARIMA مدل مناسبی برای پیش بینی قیمت سهام بدست می دهد.
فرضیه۲) شبکه عصبی درک چند لایه(MLP) در پیش بینی قیمت سهام از مدل خطی ARIMA عملکرد بهتری را نشان می دهد.
فرضیه۳) تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با استفاده از الگوریتم ژنتیک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد.
فرضیه۴) مدل ترکیبی ARIMA، شبکه عصبی درک چند لایه و تبدیل موجک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد.